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A number of results are presented, associated with investigations of 
invariant manifolds of stationary motions (IMSMs) of mechanical systems 
with first integrals /l/, which have a dimension higher than zero in 
phase space. The definition of such IMSMs, methods of isolating their 
submanifolds, and some conditions on the first integrals which ensure 
the existence of such IMSMs are discussed. 

1. Consider a system of 
defined in some domain of R”: 

which has a smooth autonomous 
Suppose that the partial 

where the alj (5) (I = 1, . .) k) are smooth functions defined on a manifold 

ordinary differential equations with smooth right-hand sides 

Zi' = xi (Z,, . . .( .3&n) (1.1) 
first integral V(q, . . ..x.,)_ Here and elsewhere i,j = I,..., n. 
derivatives of this integral can be represented in the form 

y$ 3q-- ‘~164 ali (4 (k < 4 (1.2) 

'pl (2) = 'P.2 (2) = . . . = cpk (2) = 0 (1.3) 
and in its neighbourhood. 

Definition 1. We say that representation (1.2) is proper if the rank of the matrix 

II ali (z) Ii on the manifold (1.3) is equal to k. 

Definition 2. Each first integral v (51, . . ., 4 of system (1.1) which has at least 
one proper representation of the form (1.2) will be called an integral of parts of the system. 

Thus the square of a smooth first integral V(z)-h = 0 is an integral of parts of the 
system for those values h = ho for which partial derivatives aVlaxi exist and do not 
simultaneously vanish on the manifold V (5) = ho. This follows directly from the formulae 

a (v (5) - h)wzi = 2 (v ~~1 - h) awax, 

and the given definitions. 
It is well-known /2/ that any non-degenerate solution of the system of stationarity 

equations for a smooth integral 

avlaxi = fi (x,, . . ., xn) = 0 (1.4) 

is a non-degenerate invariant manifold of (1.1) and, because it always serves as a solution 
of system (l.l), it is often called a stationary motion. (A non-degenerate solution is one 
on which the Jacobian of (1.4) does not vanish). 

If however the Jacobian of system (1.4) vanishes on some portion of phase space, then 
Eqs.(1.4) are dependent. 

Suppose that amongst them the first k functions in (1.4) are independent of z: 
'jt (x,, . . ., x,) = 0, . . ., fk (x,, . . .( 2,) = 0 (1.5) 

and they are "irreducible", (i.e. they cannot be expressed in the form of products of func- 
tions), then system (1.5) defines an invariant manifold of (1.1) /l/. Eliminating with the 
help of (1.5) some of the variables XQ(~= I,..., k) from (l.l), we obtain (in a corresponding 
chart of the manifold (1.5) /3/) differential equations for the vector field on (1.5): 
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In other charts of manifold (1.5) the equations are similar to (1.6). 

Definition 3. An invariant manifold with dimension greater than zero whose equation is 
a solution of system (1.4), with a vector field defined on it by the original system of dif- 
ferential equations, will be called a degenerate invariant manifold of stationary motions 
(IMSMs) . 

It is clear that all perturbations of the right-hand sides of Eqs.(l.l) which leave the 
integral v (2) unchanged, also leave Eqs.(1.5) unchanged, whilst changing the vector field 
on the IMSM being discussed, Hence the inclusion of the vector field in the concept of an 
IMSM substantially "closes the problem" for degenerate IMSMs. (The number of equations in 
the definition of the IMSM is equal to the dimensions of the phase space). 

When using the Rouse-Lyapunov theorem and its generalizations one should also have in 
mind the following intuitive idea. 

Assertion 1. Not every submanifold of a degenerate IMSM is itself an IMSM, or even an 
invariant manifold. 

To obtain an example of such a submanifold in the case of the IMSM (1.5),_(1.6) it is 
sufficient to choose constant values of the coordinates a++r = ~;~+r,..., li, = Zizi, 9 such that 
for these coordinate values some of the 

Xi, IO = Xid (xi,+,> * . 7 XiJ, (d = k + 1, . . ., n) 

D 
do not vanish in (1.6). Then at z&+r,.,.,zin we obtain from (1.4) the submanifold 

jr (Z&r * * -7 Xikt G*+l* . . * P$) = 09 * . .I fk (Xi,. * - .I Ziks Z;k+19 . . a, XK) = 0 

which obviously remains a solution of problem (1.4), but will not be a solution of system 
(1.1). 

We will now consider the case of "reducible" Eqs.(l.4). 

Assertion 2. Every first integral v (Xl, . ., 4 of parts of the system generates a 
degenerate IMSM (1.3) with an associated vector field. 

Proof. We write the identity 

in x using the commutativity of partial differentiation operators on y (r) in the form 

After using representation (1.2) for the derivatives of the integral of parts of the 
system V(x) this expression enables us to write n equalities 

The last equation reduces on manifold (1.3) to a system of homogeneous equations in k 
unknowns x1(2 = I,..., k). Because representation (1.2) is proper, the rank of the matrix of 
the system under consideration is k, and on manifold (1.3) it only has a trivial solution. 
This enables us to conclude that manifold (1.3) is invariant for system (1.1). 

In order to obtain the corresponding IMSM (1.31, it is sufficient to determine the 
vector field on the given manifold. To do this it is necessary to use (1.31 to eliminate k 
variables xij from Eq.tl.1). As a result one obtains differential equations of the form 
(1.6) which determine the required vector field on the corresponding chart. Thus, by 
inspecting all the charts, one can determine the vector field throughout the whole manifold. 

Consider the total derivative of the integral V(x) with respect to system (1.1): 

W/d 2 ‘pl (4 (%1X, + . . + amX,) + . . . + (Pk (2) (&X, + 
. + aknXn) 

(1.7) 

and introduce new variables with the help of the following differential relations: 



then 

IMSM 
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glt' = e*,;r,' + . . . + U~,X,' (a = 1, . . ., E%) (W 

If this last system of equations (distribution /3/l is integrable, i.e. if 

acprlarr = all, . . .,acpJaz, = a,,, . . ., aqkjaxl = at,, . . ., aqkiaxn = aLn 

in the new variables VI, . . ., cPk, xk+lr . . ., X, expression(l.7) can be written in the form 

dV/dt = y&' + . . r + qk9)E’ 
Integrating the last equation we obtain 

v = 'is @+'I* + +',* + . . . + (Pk? 69) 

Thus, in the case of an integrable distribution (1.8) variables exist in which the 
(1.31, (1.6) under consideration turns into a linear subspace 

q1 = r& = . . . = (Pg = 0 (2.10) 

associated vector field (1.61, whilst the quadratic integral of parts of system (1.9) 
serves as its generator. 

Obviously, manifold (1.10) can be considered to be basic, and then the original IMSM 
(1.3) is, generally speaking, a ramified covering for it. 

Integral (1.9) is sign-definite for 'PI* . . . . ‘pk in a neighbourhood of (l.lO), which means 
that on the basis of the theorem corresponding to Lyapunov's second method one can deduce 
the stability of the IMSM (1.101, and consequently, that of the IMSM (1.31, (1.6) as well. 
This proves the following theorem. 

Theorem 1. If system (1.1) has a first integral of parts of the system with represen- 
tation (1.2) and distribution (1.8) is integrable, then IMSH (1.31, (1.6) is Lyapunov stable. 

2. We shall give a specific example of an investigation of a somewhat general mechanical 
system for which there exist non-quadratic first integrals of parts of the system of aif- 
ferential equations of motion. 

Consider a system of coupled solids with a support (one of the bodies having a single 
fixed point). 

The Lagrange function for such a system can be written as follows /a/: 

Here %.(a = 4,2,3) are the projections of the angular velocity of the supporting body 
onto coordinate axes tied to it, qk (k = 1, . . ., ra) are generalized coordinates giving the 
positions of the supported bodies relative to each other and to the supporting body and 
I?J (P,, . . ., 4") is the force function defining the interactions of the supported bodies. (L 
can also be interpreted differently, see e.g. /5/l. The differential equations of motion of 
this system 

(where equations that are obtained by cyclic permutations of the indices 1, 2, 3 have not 
been written out) have four first integrals 

(2.1) 

(2.2) 
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The last three of these, as can be easily verified, are integrals 
(2.1). 

We shall isolate the degenerate invariant manifolds of stationary 
to this triplet of integrals. To do this we form the combination 

Kclrs) = ‘l,V, - h,V, - l!phaVa 

of parts of the system 

motions which correspond 

and write the stationarity conditions of one of the integrals of the combination in terms of 
the others, following Lagrange's method 

(a, -&Ye) Jtlv = 0, 

with hs = 4," 

one can rewrite 

and introducing the notation 

'pr = Q,---rY,? 'pz = Q, - %"tk, (P3 = Q, - 4% 

the stationarity conditions in the form of (1.2) 

$$qk*) = 0, V, = jl Qay~ = m, v, = y$ = 1 
k=l 82 Bd 

This representation is proper, because the determinant of the matrix 

Jr, (q) Ju (4 
J,, 04 J,, (4 
J,, 04 J,, 04 / 

is non-zero for all values of '&r(k = 1, . . ., n) because of its mechanical meaning. 
From this it follows, consistent with Assertion 2, that the equations 

'pe = Q, - h,ye = 0 (B = 1, 2, 3) (2.3) 

define a family of invariant manifolds of systems (2.1). Eliminating Y17 Yz and Y3 with the 

aid of (2.3) from the integrals V, = m and V, = 1, we have m = h, = n. 
Thus on each level surface of the integral V, = m there lies exactly one representative 

of the single-parameter family (2.3). 
Eliminating YI, Ya and y3 with the help of the same conditions from the last three 

differential equations of (2-l), we obtain relations coinciding with the first three equations 
of (2.1). 

Consequently, the vector field on the invariant manifold (2.3) will be governed by Eqs. 
(2.1) if one drops the last three (Poisson) equations. We remark that for all values of the 
family's parameter h, = m the vector field will be the same. (The parameter does not occur 
in the differential equations). 
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Direct verification shows that in the case under consideration system (1.8) takes the 
SO?333 

and is integrable. 
It is possible to change to new variables % %, % % % 03 and 4;qi; in these 

variables the IMSM (2.3) takes the form of the linear subspace 

91 = gJB = 'ps = 0 (2.4) 

with a vector field described by Eqs.(2.1) (without the three Poisson equations). 
The generator of the integral Gas) in a neighbourhood of (2.4) becomes quadratic: 

K(lzs) = ~1% -I- (pap + ‘F? and on the basis of Lyapunov's second method /6/ enables one to conclude 
that the IMSM obtained is stable. 

The stability of the IMSM (2.4) here implies the stability of the IMSM (2.3) for any 
&Z 0. 

3. Possessing a regular algorithm for obtaining degenerate IMSMs, one can pose the 
problem of finding submanifolds of stationary motions of these degenerate IMSMs. 

Here two possibilities arise, corresponding to the two groups of Eqs. (1.5) and (1.6) 
occurring in the definition of an IMSM. 

The first of these is associated with finding an IMSM of higher level for Eqs.(l.b) with 
the help of the first integrals belonging to these equations and lifting these IMSMs in phase 
space /7/. 

The second way is associated with Eqs.(1.5) and consists of finding sections of the 
original degenerate invariant manifolds of stationary motions by level hypersurfaces of first 
integrals of the problem. 

In both cases one has to prove that this results in finding invariant submanifolds that 
are indeed invariant submanifolds of stationary motions, i.e. supply stationary values for 
one of the first integrals or a combination of them. 

In certain cases this tuxns out not to be the case. Not every second-level IMSM Jlj can 
be lifted in phase space, and even a lifted second-level IMSM may turn out not to be an IMSM 
there. 

A generating integral for submanifolds of an IMSM obtained by the second method is the 
generating integral of the original IMSM completed by taking the square of that integral, 
which "cuts out" the required submanifold from the IMSM under consideration. 

This construction gives a good interpretation of the combination of integrals, which as 
well as containing a linear combination of integrals contains squares of the latter, in terms 
of the Rouse-Lyapunov theorem. 

4. To illustrate the features of isolating submanifolds of IMSMs we will give a specific 
investigation of such a problem for the motion of a Kovalevskaya top. Here the differential 
equations have the form /8/ 

2p. = qr, 29‘ = --p’ f zoYJ* r+ = --ZoYns Yl’ = Y*T - y*q (1, 2, 3) (4.1) 
We consider the combination of the energy integral and the Kovalevskaya integral (4.1) 

2K(,,) = Zp" + 29' + + + %Yl - 8, [(P” - Qa - s&J,)‘+ (2pq - ZaYr)‘] (4.2) 

and write the stationarity condition for K(O8) in the form 

(4.3) 

For &+O representation (4.3) is proper, and so defines a family of invariant 
manifolds of stationary motions: 

P = 7 = y* = 0% 1 - hd (n'd + toa) = 0, 2h = t/hp 
(4.4) 

The vector field on the given manifold is given by the standard method from (4.1): 
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The family parameter & is contained both in (4.4) and (4.5). The distribution 
corresponding to representation (4.3) is not integrable. One can look on this family of 
degenerate IMSMs as on a submanifold of an invariant manifold of pendulum oscillations of a 
body about a horizontal principal axis y, which is described by the equations 

‘==p=iya”O 
(4.6) 

Yi' = _-YSP> 2g' = %YS, Ya' = YIP (4.7) 

obtained from (4.4) and (4.5) by a section of the latter by a level hypersurface of the 
energy integral. 

Such IMSMs, of course, can appear in cases when one of the integrals occurring in the 
generating combination becomes equal to the square of another integral in that combination 
on the given TMSM. iIn the case under consideration on the manifold P== r-Ya=O the 
Kovalevskaya integral is equal to the square of the energy integral). 

We shall show that the invariant manifold (4.6), (4.7) is itself an IMSM, and its 
generating integral is obtained from (4.2) by the addition of the square of the energy integral. 
The combination 

A@'(,,") = H - 'I&V, - 'I& (ti' - h)" 

gives us five stationary conditions, in which we put p= --b, and h= ---i/p and obtain the 
following representation of the partial derivatives of "(ozo,: 

It is clear that for it,+0 and h+O this representation is proper and defines the 
required invariant manifold of pendulum oscillations (4.6) and (4.7). 

In order to finish with an illustration of possible anomalies, we consider the Delone 
IMSM defined by the equations /l/ 

pe -q* - z*yl = 0, 2pq - so,y, = 0 (4.8) 
2p' = P4, 29‘ = --'p + s,yg, r, = -2pq, ys' = 9 (pa + q~)lz, (4.9) 

and find the second-level IMSM generated on the given manifold (4.81, 14.9) by the energy 
integral 4pa+ rp= 2h of system (4.9). The relations 

p = q = 0, 2i7' = "ovs, ys' = - q3/zo (4.10) 

are of course such an invariant second-level manifold. 
Lifting this IMSM with the help of formulae (4.8), (4.9) into the phase space of the 

original problem, we obtain 

p = T = y*=o. pa f soy1 = 0, 29' = z,y,, ys' = -+f% (4.11) 

This invariant manifold of system (4.1) consists of those pendulum oscillations of the 
body about the horizontal y axis for which the mechanical energy q*fzoyl=h=O. It is 
"limiting" for the family of IMSMs (4.4), (4.5) and is interesting in that,being the lifting 
of a second-level IMSM into the phase space, is not an IMSM there, (not having a generating 
integral). 
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An averaging procedure is established for systems with a variable number 
of degrees of freedom which arise when considering vibrocollisional 
oscillations with zero velocity restitution coefficient. Compared with 
the method of staged integration /I, 2/ the approach presented, 
associated with non-analytical changes in the variables 13, 41, widens 
the class of systems that can be considered. Unlike the classical 
averaging method /5-71 there is a reduction in the degenerate degrees of 
freedom because of the specific degeneracy of the problem. 

1. Consider a system described over certain times by differential relations, and at 
other times interval by differential and finite relations of the following form: 

Here M =&f(t) is a 2n-periodic piecewise-constant function (see Fig.1); here and 
throughout n = 0,1,2,.... 

WB take X and Y to be bounded 2n-periodic finite-dimensional vector functions satisfying 
Lipschitz conditions on their first and second arguments, C is a bounded vector function with 
bounded partial derivatives with respect to the first argument and # is a small parameter. 

The vector function y(t) is a solution of an infinite sequence of systems of dif- 
ferential equations, each of which acts in the time interval 2an<t<2n (nf i), after which 
new initial conditions are imposed. 

Together with system (1.1) we consider the averaged equations 

Under the given conditions we formulate the following theorem. 

Theorem. If the solution of system (1.21 is given in a time interval of the order of 
i/p, then 

IIs--%tl<Q, IIYM-nMII<C,p 0.3) 

during that time interval, and the constants C1 and C, remain bounded as p+ 0. 
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